Figures

Cape Wind Associates, LLC. Cape Wind Project

Cape Wind Project Locus NOAA Chart# 13237, Nantucket Sound & Approaches

Consultants

Cape Wind Associates, LLC Cape Wind Project

Proposed Wind Turbine Generator Profile Detail (Not To Scale)

Consultants

Cape Wind Project

Typical Offshore Wind Turbine Generator

Figure 4-4

Source: Yttre Stengrunden, off the coast of Sweden. NEG Micon 2.0 MW turbines

Scale: not applicable Copyright © ESS Group, Inc., 2004

1. Nacelle

2. Heat Exchanger

3. Offshore Container

4. Small Gantry Crane

5. Oil Cooler

6. Control Panel

7. Generator

8. Impact Noise Reduction

9. Hydraulic Parking Brake

10. Main Frame

11. Swivelling Crane

12. Gearbox

13. Rotor Lock

14. Rotor Shaft

15. Yaw Drive

16. Rotor Hub

17. Pitch Drive

18. Nose Cone

Cape Wind Project

Typical 3.6 MW WTG Nacelle

Figure 4-5

Engineers Scientists Consultants Cape Wind Project

Source: from Vestas Scale: not applicable Copyright © ESS Group, Inc., 2004 **Typical Foundation Types**

Figure 4-6

33 kV Submarine Cable INDICATIVE ONLY – NOT TO SCALE

Approximate overall sizes:

•Diameter = 132 <u>+</u>2 mm, 146 <u>+</u>2 mm, 164 <u>+</u>2 mm

•Weight in air = $30 \pm 2 \text{ kg/m}$, $47 \pm 2 \text{ kg/m}$, $60 \pm 2 \text{ kg/m}$

Cape Wind Project

Typical Profile 33 kV Solid Dielectric Submarine Cable

3x800 mm^{2,} 115 kV Submarine Cable **INDICATIVE ONLY - NOT TO SCALE**

Approximate overall sizes:

- •Diameter = 197 +3 mm
- •Weight in air = 81 kg/m

Cape Wind Project

Typical Profile 115 kV Solid Dielectric **Submarine Cable**

Source: Pirelli/ABB Scale: not applicable Copyright © ESS Group, Inc., 2004

1x800 mm^{2,} 115 kV Upland Cable INDICATIVE ONLY – NOT TO SCALE

Approximate overall sizes:

- •Diameter = 83±2 mm
- •Weight in air = 11.2 kg/m

Engineers Scientists Consultants

Cape Wind Project

Typical Profile 115 kV Solid Dielectric Upland Cable

Source: Pirelli/ABB Scale: not applicable Copyright © ESS Group, Inc., 2004

Cape Wind Project

Yarmouth Preferred Interconnection with Barnstable Switching Station

Figure 4-12

UPLAND CABLE TRENCH CROSS—SECTION (IN ROADWAYS) CONCRETE ENCASED DUCTBANK

UPLAND CABLE TRENCH CROSS SECTION (IN R.O.W.) CONCRETE ENCASED DUCTBANK

NOTE:

E159\DEIS-DEIR\UPLAND-TRANSITION-VAULTS-111303\E159-DEIS-DETAILS-111303.DWG

NATIVE MATERIAL TO BE USED ONLY IF DETERMINED TO HAVE APPROPRIATE THERMAL RESISTIVITY AND TO BE ACCEPTABLE IN ACCORDANCE WITH THE SOIL MANAGEMENT PLAN.

Cape Wind Associates, LLC Cape Wind Project

Typical "8-over-8" Ductbank Cross-Section (Not To Scale)

UPLAND CABLE TRENCH 4-OVER-4 CROSS-SECTION (IN ROADWAYS) CONCRETE ENCASED DUCTBANK

UPLAND CABLE TRENCH 4-OVER-4 CROSS SECTION (IN R.O.W.) CONCRETE ENCASED DUCTBANK

NOTE:

NATIVE MATERIAL TO BE USED ONLY IF DETERMINED TO HAVE APPROPRIATE THERMAL RESISTIVITY AND TO BE ACCEPTABLE IN ACCORDANCE WITH THE SOIL MANAGEMENT PLAN.

Engineers Scientists

Consultants

Cape Wind Associates, LLC Cape Wind Project

Typical "4-over-4" **Ductbank Cross-Section** (Not To Scale)

Consultants

Cape Wind Associates, LLC Cape Wind Project

115 kV Landfall Transition Vault

(Not To Scale)

Consultants

Cape Wind Associates, LLC Cape Wind Project

115 kV Upland Transition Vault

(Not To Scale)

Figure 4-16

Engineers

Scientists Consultants Cape Wind Associates, LLC Cape Wind Project 115kV Upland Splice Vault

(Not To Scale)

Figure 4-17

Cape Wnd™

ESS Group Inc.

> Engineers Scientists Consultants

Cape Wind Project

Source: A2Seas v essel – Ocean Ay Scale: not applicable Copyright © ESS Group, Inc., 2004 **Typical Installation Vessel**

Figure 4-18

Cape Wind Group Inc.
Energy for Life.

Engineers
Scientists
Consultants

Cape Wind Project

Preliminary Scour Control

Source: Seabed Scour Control Systems, LTD

Scale: not applicable

Copyright © ESS Group, Inc., 2004

Consultants

Cape Wind Associates, LLC Cape Wind Project

Typical Cross Section of Submarine Cable Trench Using Jet Plow Embedment (Not To Scale)

Landfall Transition: Conceptual Design Plan

> Wind Associates, LLC Wind Project

Cape Wind Associate. Cape Wind Project

40

40

20

Horiz. Scale in Feet 20

Vert. Scale in Feet

NOTES:

Feb 23, 2004 -

- 1. UPLAND ELEVATIONS IN PLAN ARE REFERENCED TO NGVD29.
- THERE IS NO ACCEPTED NGVD29 CONNECTION TO MILLW IN THE PROJECT AREA. RELATIONSHIP BETWEEN MILLW AND NGVD29 APPROXIMATED TO GENERATE PROFILE.
- 3. EXISTING GROUND ELEVATIONS IN PROFILE ARE ESTIMATED ONLY.
- ACTUAL RELATIONSHIP MUST BE ESTABLISHED THROUGH SURVEY PRIOR TO FURTHER DESIGN EFFORTS.

